This and That

Posted in Politics | Leave a comment

Nat’l Irrigation Administration the UNDONED Works

UNFINISHED PROJECTS… HANJIN Industries and Construction Ltd., the Korean contractor.

Timely, the NIA-HCAAP projects (Help for Catubig Agricultural Advancement Projects) in Catubig and Las Navas, Northern Samar, link map, Philippines. These projects are being funded through LOANS from Japan International Cooperation Agency (JICA-JBIC) and government of the Philippines;

A Glimpse of the projects:

First, the Catubig diversion dam and the Canals (completed sometime in June 2010 or May 2011) and the Canals and minor structures are not yet completed as of May 2011, the dam was discovered to have cracks due to flooding last December 2010 as Mr. Deodito Tejero was telling story about the cracks, while drinking beer at the office of Contractor, and had undergone repair works undertaken by HANJIN. On the time while I was there the HANJIN was still constructing the CANALS and some minor structures even the contract was already finished because actually it was not really finished even the consultant the Japanese Mr. Toku was there always visiting and walking on the site as of May 2011;

The construction of Bulao diversion dam and Hagbay diversion dam under contract with HANJIN Industries and Construction Ltd., were terminated, the Bulao diversion Dam was rebid; and then;

Second, the Hagbay diversion Dam project at Sta. Fe, Catubig town, 10 kilometers away from town proper of Las Navas with poor, muddy and inaccessible road to reach the site, had been awarded last July 2, 2010 to Contractor, wherein as of April 18, 2011 having a negative slippage (-16.6%) as per letter of the NIA Administrator and was subject for termination already, because the sub-contractor and the engineers (Mr. Danilo Maderazo, magna cum laude, former Professor of civil engineering at Divine Word University, former reviewer of Salazar engineering review center, first placer in the Geodetic engineers licensure exam, my professor) from Tacloban City and Enzo construction from Catbalogan Western Samar, had abandoned and left the Hagbay dam project, because when they made their “EVALUATION daw” they marked him as having No sufficient experiences in dam construction, and inadequate qualifications.

Hence, the main contractor has resorted to get a new sub-contractor from Catarman Northern Samar, henceforth, a protégé of Politicians or (we don’t KNOW who are their back-ups?), had accepted the sub-con contract from main contractor, this sub-contractor did not make a clearer view, thorough study and did not make detailed estimates of the contract design plans, the works to be done, namely; major structures (DAM structures), bridge structure, minor structures (drainage canals, irrigation canals with access road and/or service road with the same length of the irrigation canals length (14.2 km.), intake boxes, crossing pipes, the length of drainage canals, etc. The sub-contractor is not a civil engineer but unlicensed mechanical graduate, bully, prideful and CRAFTY person, a new contractor one and 1/2 (1.5 year), Mr. Rikki Rubenecia. Unfortunately, he accepted the sub-con contract amount of php110 Millions out of ph231 Millions total contract amount by the main contractor, which is very obvious by a simple mind and layman analysis and understanding, that the sub-contract amount is only ???of the total contract amount. hence, the projects would be finished using sub-standard materials and low quality project with the amount accepted by the sub-contractor.

Here are the crucial parts of my study and OBSERVATIONS:

I was too inquisitive and become curious, enquiring, why they were very prideful of their design, so I used my time to delve into details, in my in depth study of the design plans of the said projects, I discovered that the reinforced concrete design of the DAM Structures and Bridge Structures were not accurate as being bragged by the NIA engineers. If you read this blogpost it’s a big question mark why?“a civil engineer also had worked there from year 2007 to June 2010 as one of the engineers and CAD operator”. Accordingly, I was able to retrieve the Excel files of Danilo De Asis containing the Spreadsheets for DAM structures and Bridge Structures, namely; Catubig dam, Pinipisakan Bridge Flume, Hagbay dam and service Bridge, Bulao dam structural analysis and design computations. I reviewed and checked the spreadsheets calculations and the results are not good as being show off and pridefully bragged by Mr. Danilo de Asis, Prisco O. Boco III and Dennis Lozano. I discovered when I checked that the Chief designer Prisco O. Boco III and Amadeo Montejo had made mistakes in the applications of formulas and assumptions for Bridge Columns, Barrages piers, Sluice piers, T-Beams, R-Beams, Slabs; These are not altered copies all of these are authentic.

They used Old standard, omega, ω =0.18 (ρ =0.18f’c/fy) for control of deflections clearly an Old standard ACI 318 -1963 and used until 1970 as mid range percentage of reinforcement, ρ=As/bd ≤0.18f’c/fy (although it is not distinctly advantageous value per Prof. James O. Jirsa comment in his book reinforced concrete fundamentals), which was evidently DISCARDED from the Code, revised ACI 318 -1971 Code and up to the latest publications of ACI 318 Code 2011 edition, obviously more than 40 years time already had elapsed/passed. According to Prof. Jack McCormac of the Clemson University, U.S.A. the WSD of alternative method is not mentioned already in the 2002 edition of ACI 318 to be used for design. 

The Load combinations they used were WSD, combined with Load factors used by ACI 318; viz,

Group III = 1.4DL + 1.7LL, and;

Group VII = D + E + B + SF + EQ

The Load Factor (Lf) equal to 1.4 for Dead Load and 1.7 for Live Load are not correct because this is applicable only to Gravity Loads for Buildings and other vertical structures, and not applicable to TRUCK MOVING LOADS for Bridges.

For your information….FYI.!

As per AASHTO 1973 edition-Highway Bridges Specifications, AASHTO 16th, 17th edition, LRFD-AASHTO 2nd, 3rd, 4th, 5th and 6th edition, ACI 343-1995-Design of Reinforced Concrete Bridges, and NSCP Volume 2, Bridges-1987 edition. The Load combinations are, viz.

Group III = 1.3DL + 2.2*(L +I)

Group VII = y[βeD +βeE + B + SF + EQ]

where: βe =1.3


  1. ACI 435-1995-Control of Deflection in Concrete structures.
  2. Handbook of Concrete Engineering by Mark Fintel-1985,
  3. Design Concrete Structures by Park and Paulay-1974,
  4. Reinforced Concrete Design by Noel Everard, Ph.D.-1966.

The Strength Reduction Factor Φ (phi) =0.70 for compression controlled members (columns and Beams for compression controls), which was applicable up through ACI 318-1999 Code, they have been changed to Φ (phi) =0.65 for compression controlled members beginning with ACI 318-02 Code and continuing to ACI 318-05 Code, up through ACI 318 -11 Code. Let me EDUCATE you people there…!!!

First, they used the 1963 and 1983 ACI 318 Codes (American Concrete Institutes) which had undergone several major revisions already, major revision is done every six (6) years and minor revisions in between or every 3 years;

Pier moving load analysis using 50% of 10 tonnes truck load

Piers Load Calculation using 50% only for 20 tonnes and 10 tonnes

Second, they used AASTHO specifications (American Association of state highway and transportation officials); HS 20-1944, 8000 lbs front axle, 32000 lbs. rear axles and HS 10 -44, 4000 lbs front axle and 16000 lbs rear axle,  wherein they used 100% of 20 tonnes and 10 tonnes loads for girders, whereas 50% of 20 tonnes and 10 tonnes load for piers/columns design calculations which is a very great blunder in design assumptions, hence the girders are stronger than columns;

third, they inadvertently applied erroneous formulas for the variables “C” distances from the neutral axes to the compression concrete fiber, which had resulted bigger and negative(-) values for the variable “C” and Strength Design Capacity ϕPn, ϕMn of the Columns and/or Piers of barrage Dams (Barrages piers, Sluices piers) and service bridges piers, which he noted DISCARD design for strength capacity. Why? because he arrived a negative values for “C” and ϕPn (strength capacity).  I verified his calculations and made my conclusion, viz;

  1. The Strain compatibility analysis was not done correctly;
  2. øPn is negative (-) which means axial load is upward(tension); and
  3. Variable “C” is negative which obviously outside section diagram of column “Absurd and ridiculous”.

My strong comment: variable “C” must not be negative (-) and never be a negative value.

value of “C” is negative -design calculation by PRISCO BOCO III

value of C and Pny are negative -Design of PRISCO BOCO III

Consequently, I tried to correct and rectify the applications of the formulas he used, hence, I have arrived a correct values which I have compared with the examples presented in the books of Venancio Besavilla (author-Reinforced Concrete Design, Besavilla used the ACI 318 -1983 Code) and Professor Arthur H. Nilson, PhD. (author-Design of Reinforced Concrete Structures); Prof. Chu-Kia Wang, PhD. and Prof. Charles G. Salmon, PhD. (authors- Reinforced Concrete Design); Phil Ferguson, James O. Jirsa (author -reinforced concrete fundamentals) and applied the ACI 318 -2008 Code and ACI Design Handbook-Volume 2 (American Concrete Institutes) which I have latest copies.

There are three (3) methods in analysis and design in concrete columns as discussed by Chu-Kia Wang in his book reinforced concrete design, namely;

  1. Principles of statics;
  2. Non dimensional strength interaction diagram( ACI Design Handbook- volume 2); and
  3. Approximate method using Charles Whitney formula.

I will not discussed anymore these methods of design, but I strongly suggest to read these books. In view of the fact that engineering education in the Philippine is American oriented.

The Engineers are not permanent employees of NIA –HCAAP (PMO), they are all casuals and job orders employees. The engineers of NIA –HCAAP are being hired and employed thru politics (in local dialect “palakasan system”) the Project Manager, Congressman (who).

Mr. Danilo De Asis, a graduate of BSCE on 2001, at the University of Eastern Philippines (UEP), Catarman, N. Samar, he replaced Mr. Prisco O. Boco III, as chief for operations, planning and designs who was transferred to NIA, Regional Office Tacloban City, although Mr. Danilo De Asis had worked for 9 years still he is inexperienced in design and construction. The Project –In charge Mr. Deodito Tejero (a good man but effeminate, vicious man, he often ask his kickbacks to sustain his vices) from Biri, Northern Samar. The Project Engineer Mr. David Irorita a good man, a man of few words, Mr. Buenaventura Poso (BSCE 2003)-Asst. PE,  Dennis Lozano-Design unit head.

But unfriendly, Mr. Reinerio Irinco a graduate in BS Agricultural Engineering (University of Eastern Philippines) and Danilo de Asis  and others were saying that the contractor’s engineers are still young and inexperienced engineers. Mr. Irinco was unaware of the facts that the design calculations done by them were erroneous.

Subsequently, meeting was held, then the NIA-HCAAP (PMO) had suggested the contractor to hire engineers, 55 to 80 years old and having experiences for more than 10 years in dam construction, office engineer, and earthwork supervisor to supervise this project which is 10 kilometers away from town proper of Las Navas, with muddy and inaccessible road; I couldn’t withstand the hardship because the means of transportation is “WALKING” in a muddy, rough road and motorcycle back ride to reach the site, a far flung barangay Sta. Fe Catubig, I was there and I went there on foot for the whole 6 kilometers, we footed back and forth, and our feet and hands were embedded in a muddy road also a Php64 millions project of NIA-HCAAP reported 100% completed as of 2008.  These projects involved millions of US Dollars and millions of Philippine pesos only to find out the concrete designs for DAMS and Bridges have errors in calculations. 

Another HIGHLIGHT problem of HCAAP projects!

Moreover, my feet and hands were embedded up to the knee level (local dialect “nabaon ang mga paa ko hanggang tuhod”) in the muddy road which was also a project of National Irrigation Administration, NIA-HCAAP-PMO reported 100% completed as of 2009, this BULAO Farm to Market Road (FMR) was implemented by Provincial engineering office (Provincial component) with the supervision of JICA Consultants headed by Hitoshi Tuko (JV of Consultants for HCAAP, Japanese consultants), the 7.10 kilometers FMR project was Php64 millions, but until now it is inaccessible and muddy road. I was surprised why HCAAP (PMO) accepted 100% completed the Farm to Market Road. Only few people knew the real story behind the acceptance. Why? I met the former Mayor and now the incumbent Vice Mayor of Las Navas, he told me the real story behind and he said “KARMA will judge them.” And he said “I do not want to quarrel with the administration and to the Liberal Party.”

PH64 millions BULAO FMR, 7.10 kilometers reported 100% completed

7.10 kilometers BULAO FMR reported by HCAAP 100% completed as of 2009

PH 64 millions 7.10 kilometers BULAO Farm to Market Road reported 100% completed

As an advice,  I suggested to Mr. Gilbert Frincillo (Leyte Institute of Technology-Tacloban City) the engineer of the main contractor who is also not good in structural concrete design to hire from Harvard University (USA), Oxford University(UK), if they could not find from Oxford, Harvard, Cornell, Stanford, California, Michigan and Illinois universities. HIRE from University of Eastern Philippines (UEP -Catarman, N. Samar) or elsewhere, like his encoder Ferlene Tafalla an egotist, priggish person, tyro in works who graduated from UEP-Catubig N. Samar, and also like what the HCAAP (PMO) did! like for instance they hired Mr. Danilo de Asis and Dennis Lozano (UEP-Catarman N. Samar), puffed up with pride, a pedantic (in local dialect “nagdunong-dunongan”) and with little knowledge in concrete design and analysis, frankly inexperienced engineers. Sorry to upset them for my hostile comments.

To show NiA-HCAAP(PMO) design calculations, I am posting screen shots taken from protected spreadsheets by Prisco O. Boco III, as proof of their mistakes in their design calculations for anyone to review.

The Designers must undergo trainings and seminars in Concrete Design and Structural Analysis before they become prideful engineers and eventually become humble engineers.

This slideshow requires JavaScript.

Continue reading

Posted in Engineering, Opinion, Politics | Tagged , , , , , , | Leave a comment

History of Reinforced Concrete and Structural Design

The average person thinks that concrete has been in common use for many centuries, but such is not the case. Although the Romans made cement – called Pozzolana – before Christ by mixing slaked lime with a volcanic ash from Mount Vesuvius and used it to make concrete for building, the art was lost during the Dark Ages 5th century -15th century A.D.) and was not revived until eighteenth and nineteenth centuries. Marcus Vitruvius Pollio, an Architect/Engineer during the golden age of Caesar Augustus (around 25 BC). In his textbook, quite humbly titled “On the Origin of all Things”, Vitruvius held forth on the fundamental behavior of building materials, and then presented his views about the nature of theory versus practice, Vitruvius suggestion that design engineers should have more construction experience, and vice versa.

In the mid-1800s, Joseph Lambot in France constructed a small boat and received patent in 1855.

Concrete Boat by Joseph Louis Lambot

Another Frenchman Francois Coignet, published a book in 1861 describing many applications and uses of reinforced concrete.

Joseph Monier, a Parisian gardener, the owner of an important nursery in France, generally deserves the credit for making the first practical use of reinforced concrete in 1867. He acquired the first French patent in 1867 for iron reinforced concrete tubs, then followed by his pipes, tanks in 1868, flat plates in 1869, bridges in 1873, stairways in 1875. He apparently had NO QUANTITATIVE KNOWLEDGE regarding its behavior or any method in making design CALCULATIONS.

Chazelet Bridge design-built by Joseph Monier, 1875

In United States the pioneering were made by Thaddeus Hyatt, who made experiments on reinforced concrete beams in 1850s. However, Hyatt experiments were unknown until 1877, when he published his works privately. Ernest l. Ransome was the first to use  and patent in 1884 the deformed (twisted) bars. In 1890, Ernest Ransome built the Leland Stanford Junior Museum, in San Francisco, a reinforced concrete building, two stories high and 312ft (95m) long. Since that time, the development of reinforced concrete in the United States has been rapid.

During 1891-1894, various investigators in Europe published theories and test results; among them were Moeller (Germany), Robert Wunsch, 1884 (Hungary), J. Melan, 1892 (Austria), F. Hannebique, 1842-1921 (France), and F. von Emperger (Hungary), but practical use was less extensive than in United States. Throughout the entire period 1850 -1900, relatively little was published, as the engineers working in the reinforced concrete field considered construction and computational methods as trade secrets.

First Reinforced Concrete bridge in US designed by Josef Melan - Iowa US,1893

Footbridge Francois Hannebique -1905, Photo by Jacques Mossot

One of the first publications that might be classified as a textbook was that of A. Considere in 1899. In 1903, with the formation in the United States of a joint committee of representatives of all organizations interested in reinforced concrete, uniform applications of knowledge to design were initiated.

The earliest Textbook by F. Turneaure-1907

The earliest textbook in English was that of Frederick E. Turneaure and Maurer published in 1907 entitled “Principles of Reinforced Concrete Construction”. In the first decade of the twentieth century, progress in reinforced concrete was rapid. Extensive testing to determine beam behavior, compressive strength of concrete, and modulus of elasticity was conducted by Arthur N. Talbot at the University of Illinois, by Frederick E. Turneaure and Morton O. Withey at the University of Wisconsin, and by Bach in Germany, among others.

From about 1916 to the mid – 1930s, research centered on axially loaded column behavior. In the late 1930s and 1940s, eccentrically loaded columns, footings, and the Ultimate Strength of beams received special attention.

With the interest in and understanding of the elastic methods of analysis in the early 1900s, the elastic Working Stress method (also called Allowable-Stress Design or straight-line design) was adopted almost universally by codes as the best for design.

The first modification of the elastic Working Stress method resulted from the study of axially loaded columns in the early 1930s. By 1940s, the design of axially loaded columns was based on Ultimate Strength.

Rectangular Stress Block -Charles S. Whitney

In the 1930s, Charles S. Whitney an american civil engineer proposed the use of a rectangular compressive stress distribution to replace that an average stress of 0.85f’c is used with a rectangle of depth a = β1 x, determine so that a/2 = k x. In 1942 Charles S. Whitney presented a paper emphasizing this fact and showing how a probable stress-strain curve with reasonable accuracy, a parabola be replaced with an artificial rectangular stress block.

With the rectangular stress block simplification, the 1956 ACI-318 code added an appendix permitting Ultimate Strength Design (USD) as an alternate to Working Stress Design (WSD). The 1963 ACI-318 Code gave both methods equal standing.

Strength Design Stress

Nominal Strength Design Capacity Formula

Since the mid-1950s, reinforced concrete design practice has made the transition from that based on elastic methods to the one based on strength.

References-for additional sources of background information.

  1. Principles of Reinforced Concrete by Frederick E. Turneaure and E. Maurer, 1st edition-1907, 2nd edition-1909, 3rd edition-1919;
  2. Reinforced Concrete for Buildings by Ernest L. Ransome and Alexis Saurbrey-1912;
  3. Plain and Reinforced Concrete Arches by Josef Melan, 1st edition-1915 and 1917;
  4. Experimental Research for Reinforced Concrete by Armand Considere -1903;
  5. A Treatise on Concrete -Plain and Reinforced by Frederick W. Taylor and Sanford E. Thompson, 1st edition-1905, 2nd edition-1909, 3rd edition-1916;
  6. Concrete-Steel Construction by Professor Emil Morsch and E. P. Goodrich, 3rd edition -1909;
  7. Reinforced Concrete in Europe by Albert Ladd Colby -July 1909;
  8. Concrete-Steel Buildings by W. Noble Twelvetrees -1905;
  9. Reinforced Concrete by Frederick Rings -1910;
  10. Reinforced Concrete by Charles F. Marsh -1904.
Posted in Engineering, Personal | Tagged , , , , , , , , , , , | Leave a comment

History of Structural Analysis

STRUCTURAL ANALYSIS as we know it today evolved over several thousand years. During this time many types of structures such as beams, arches, trusses and frames were used in construction for Hundred or even thousand of years before satisfactory methods of analysis were developed for them.

The EGYPTIANS and other ancient builders surely had some kinds of empirical rules drawn from previous experiences for determining sizes of structural members. There is, However, NO EVIDENCE that they had developed any THEORY of STRUCTURAL ANALYSIS. The Egyptian Imhotep built the great PYRAMID of Saqqara in about 3000 -2500 B.C. sometimes is referred to as the world’s first Structural Engineer. Other Egyptian builders who built great pyramid of Khufu are called the builders.

Pyramid at Giza compound

Menkaure Pyramid with granite visibly unifinished about 2620 -2480 BC

Although the Greeks built some magnificent structures, their contributions to structural theory were few and far between.

Ruins of Parthenon-Ancient Greece built by Iktinos- 447 to 438 BC

Pythagoras (about 582 -500 B.C.), a Greek mathematician, who is said to have originated the word mathematics, is famous for the right angle theorem that bears his name the Pythagorean theorem. Archimedes (287-212 B.C.) Greek mathematician developed some fundamental principles of static and introduced the term center of gravity.

The Romans were outstanding builders and were very competent in using certain structural forms such as semicircular masonry arches. As did the Greeks, they, too had Little KNOWLEDGE of Structural Analysis and made even less Scientific progress in Structural Theory. They probably designed most of their beautiful buildings from an ARTISTIC VIEWPOINT. Perhaps their great bridges and aqueducts were proportioned with some RULES OF THUMBS, however, if these methods of design resulted in proportions that were insufficient, the structures collapsed and no Historical records were kept. Only their successes endured.

Most of the knowledge that the Greeks and Romans accumulated concerning structural engineering was lost during the Middle Ages between 476 A.D. and 1492 A.D. and has been recovered only since the Renaissance (beginning of Renaissance period -the fall of Muslim Granada in Spain and the voyage of Christopher Columbus to America.

Roman Bridge-134 AD

Ruin of Roman Bridge-30 BC to 14 AD

One of the greatest and most noteworthy contribution to structural analysis, as well as to all other scientific fields, was the development of the Hindu-Arabic system of numbers. Unknown Hindu mathematician in the second and third centuries B.C. originated numbering system of One to Nine (1 to 9). In about 600 A.D. the Hindus invented the symbol SUNYA (meaning empty). which we call ZERO. (The Mayan Indians of Central America, However, had apparently developed the concept zero about 300 years earlier). In the 8th century A.D. the Arabs learned this numbering system from scientific writings of the Hindus. in the following century, a Persian mathematician wrote a book that include the system, his book was translated into Latin some years later and brought to Europe. In around 1000 A.D. Pope Sylvester II decreed that the Hindu- Arabic numbers were to be used by Christians.

In the 17th Century A.D. , Sir Isaac Newton (1642-1727), invented the fundamental principles of Structural Analysis, an English mathematician and physicist, and one of the Greatest Scientists in history who ever lived. His discoveries and theories laid the foundation for much of the progress in the science.

Sir Isaac Newton was one of the inventors of the branch of mathematics called Differential and Integral CALCULUS (The other was German mathematician Gottfried Wilhelm Leibniz). Newton also formulated 3 laws of motion, and from them the universal law of Gravitation. To develop his Theory of Gravitation, Newton had to develop the Science of FORCES and MOTION called MECHANICS.

Newton's Law of Gravitation

Starting about 1665, at the age of 23, newton enunciated (pronounce, speak) the principles of mechanics, formulated the law of Gravitation; viz.

  1. The first law of motion; an object at rest tends to remain at rest; an object in motion tends to in motion in a straight line unless acted upon by an outside force. The development of physics owes much to Newton’s Law of motion, notably;
  2. the second law…… “the force acting on an object is equal to the mass of the object multiplied by the acceleration”, F = ma ;
  3. and the third Law of motion; for every action there is an equal and opposite reaction.

It was actually in 1847, the first rational method of analyzing jointed trusses was introduced by Squire Whipple (1804 -1888) of United States. This was the first significant American contribution to structural theory. Several excellent methods for calculating deflections were published in the 1860s and 1870s which further accelerated the rate of structural analysis development. He has become known as the father of iron Bridge Building in America.

Iron Bowstring bridge -Squire Whipple

Normans Kill, Schenectady NY, USA-1867

Among the important investigators and accomplishments were: James Clerk Maxwell(1831-1879) of Scotland, for the Reciprocal Deflection theorem in 1864; Otto Mohr(1835-1918) of Germany for Elastic Weights in 1870; Alberto Castigliano of Italy for Least Work theorem in 1873; Charles E. Green of the United States for the Moment-Area theorems in 1873; B.P.E Clapeyron of France for the Three-Moment theorem in 1857.

Hardy Cross

In the United States of America two great developments in Statistically Indeterminate Structure Analysis were made by GEORGE A. MANEY (1888-1947) and HARDY CROSS (1885-1959).

GEORGE A. MANEY introduced Slope Deflection method in 1915 at University of Minnesota engineering publication. In Germany, BENDIXEN introduced Slope Deflection in 1914. For nearly 15 years, until the introduction of Moment Distribution, Slope Deflection was the popular method used for the Analysis of continuous beams and frames in the United States of America.

A very common method used for the approximate analysis of continuous concrete structures, was the Moment and Shear Coefficient developed by the H. M. Westergaard and W. A. Slater a member of the American Concrete Institute in 1926-1929.

Another most common approximate method of analyzing building frames for LATERAL LOADS such as winds, earthquake (seismic) is the PORTAL method which was presented by Albert Smith in the Journal of the Western Society of Engineers in 1915. Another simple method of analyzing building frames for Lateral Loads is the Cantilever method presented by A.C. Wilson in engineering record, 1908. These methods are said to be satisfactory for buildings with height not in excess of 25 to 35 stories.

In the first half of the 20th century A.D., many complex structural problems were expressed in mathematical form, but sufficient computing power was not available for practically Solving the resulting EQUATIONS and/or FORMULAS. This situation continued in the 1940s, when much work was done with MATRICES for analyzing aircraft structures. Fortunately, the development of digital computers made practical the use of equations and FORMULAS for these and many other types of Structures, including High rise Buildings.

Hence, in my research and study for almost two decades, it is seems IRONIC that the COLLEGE Student of TODAY can LEARN in a FEW MONTHS the Theories and Principles of STRUCTURAL ANALYSIS that took HUMANKIND several THOUSAND YEARS to DEVELOP.

  • Member: American Concrete Institute (ACI)
  • Member: American Society of Civil Engineers (ASCE)
  • Member: Phil. Institute of Civil Enginee (PICE)

References -books additional sources of background information.

  1. Civil Engineering magazine by American Society of Civil Engineers (ASCE)-Soaring toward the heavens (Great Pyramid at Giza) by Craig B. Smith, PhD, P.E., volume 74, No.11-2004;
  2. Elementary Structural Analysis by C.H. Norris, J.B. Wilbur and S. Utku, 3rd edition -1976;
  3. Structural analysis by Jack C. McCormac and J.K. Nelson Jr., -1997;
  4. Structural Mechanics by Charles E. Greene -1st, 2nd and 3rd edition-1897 to 1909;
  5. Structural Engineering by John E. Kirkham -1st edition-1914;
  6. Cyclopedia of Civil Engineering-American Technical School, 8 volumes; by Federick E. Turneaure-1908;
  7. Structural Engineering -Strength of Materials, volume 1 by George F. Swain, 1st edition-1924;
  8. Structural Engineering by J. husband and W. Harby -1911;
  9. The Theory of Structures and Strength of Materials by Henry Bovey, second edition-1896, 3rd edition -1900;
  10. The First, Second, Third and fourthbook of Architecture by Andrea Palladio -1755.
Posted in Engineering | Tagged , , , , , | Leave a comment

Test post!

This is my young blog…

External links: open in new window engineer’s perspective is not responsible of their contents nor endorses it. Squire Whipple bridges.

Posted in Personal | Leave a comment

Hello world!

Welcome to my young blog. I will write every now and then, with a new title for a fresh post.

Here are some suggestions for your first post.

  1. You can find new ideas for what to blog about by reading the Daily Post.
  2. Add Press This to your browser. It creates a new blog post for you about any interesting  page you read on the web.
  3. Make some changes to this page, and then hit preview on the right. You can always preview any post or edit it before you share it to the world.
Posted in Uncategorized | 1 Comment